首页 > 人工智能(Artificial Intelligence) > 机器学习基础 > 线性代数与微积分基础

数理统计基础知识

数理统计是数学的一个分支,分为描述统计和推断统计。它以概率论为基础,研究大量随机现象的统计规律性。描述统计的任务是搜集资料,进行整理、分组,编制次数分配表,绘制次数分配曲线,计算各种特征指标,以描述资料分布的集中趋势、离中趋势和次数分布的偏斜度等。推断统计是在描述统计的基础上,根据样本资料归纳出的规律性,对总体进行推断和预测。

基本概念

总体:研究对象的全体,它是一个随机变量,用$X$表示。

个体:组成总体的每个基本元素。

简单随机样本:来自总体$X$的$n$个相互独立且与总体同分布的随机变量$X_{1},X_{2}\cdots,X_{n}$,称为容量为$n$的简单随机样本,简称样本。

统计量:设$X_{1},X_{2}\cdots,X_{n},$是来自总体$X$的一个样本,$g(X_{1},X_{2}\cdots,X_{n})$)是样本的连续函数,且$g()$中不含任何未知参数,则称$g(X_{1},X_{2}\cdots,X_{n})$为统计量。

样本均值:$\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}$

样本方差:$S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{2}$

样本矩:样本$k$阶原点矩:$A_{k} = \frac{1}{n}\sum_{i = 1}^{n}X_{i}^{k},k = 1,2,\cdots$

样本$k$阶中心矩:$B_{k} = \frac{1}{n}\sum_{i = 1}^{n}{(X_{i} - \overline{X})}^{k},k = 1,2,\cdots$

分布

$\chi^{2}$分布:$\chi^{2} = X_{1}^{2} + X_{2}^{2} + \cdots + X_{n}^{2}\sim\chi^{2}(n)$,其中$X_{1},X_{2}\cdots,X_{n},$相互独立,且同服从$N(0,1)$

$t$分布:$T = \frac{X}{\sqrt{Y/n}}\sim t(n)$ ,其中$X\sim N\left( 0,1 \right),Y\sim\chi^{2}(n),$且$X$,$Y$ 相互独立。

$F$分布:$F = \frac{X/n_{1}}{Y/n_{2}}\sim F(n_{1},n_{2})$,其中$X\sim\chi^{2}\left( n_{1} \right),Y\sim\chi^{2}(n_{2}),$且$X$,$Y$相互独立。

分位数:若$P(X \leq x_{\alpha}) = \alpha,$则称$x_{\alpha}$为$X$的$\alpha$分位数

正态总体的常用样本分布

(1) 设$X_{1},X_{2}\cdots,X_{n}$为来自正态总体$N(\mu,\sigma^{2})$的样本,

$\overline{X} = \frac{1}{n}\sum_{i = 1}^{n}X_{i},S^{2} = \frac{1}{n - 1}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2},}$则:

1) $\overline{X}\sim N\left( \mu,\frac{\sigma^{2}}{n} \right){\ \ }$或者$\frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}\sim N(0,1)$

2) $\frac{(n - 1)S^{2}}{\sigma^{2}} = \frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \overline{X})}^{2}\sim\chi^{2}(n - 1)}$

3) $\frac{1}{\sigma^{2}}\sum_{i = 1}^{n}{{(X_{i} - \mu)}^{2}\sim\chi^{2}(n)}$

4)${\ \ }\frac{\overline{X} - \mu}{S/\sqrt{n}}\sim t(n - 1)$

重要公式与结论

(1) 对于$\chi^{2}\sim\chi^{2}(n)$,有$E(\chi^{2}(n)) = n,D(\chi^{2}(n)) = 2n;$

(2) 对于$T\sim t(n)$,有$E(T) = 0,D(T) = \frac{n}{n - 2}(n > 2)$;

(3) 对于$F\tilde{\ }F(m,n)$,有 $\frac{1}{F}\sim F(n,m),F_{a/2}(m,n) = \frac{1}{F_{1 - a/2}(n,m)};$

(4) 对于任意总体$X$,有 $E(\overline{X}) = E(X),E(S^{2}) = D(X),D(\overline{X}) = \frac{D(X)}{n}$

关闭
感谢您的支持,我会继续努力!
扫码打赏,建议金额1-10元


提醒:打赏金额将直接进入对方账号,无法退款,请您谨慎操作。