首页 > 人工智能(Artificial Intelligence) > 生成对抗网络

生成模型与判别模型

生成式对抗网络(Generative Adversarial Networks,GANs)是蒙特利尔大学的Goodfellow Ian于2014年提出的一种生成模型, 在之后引起了业内人士的广泛关注与研究。

GANs中包含了两个模型,一个是生成模型,另一个是判别模型。GANs的实现方法是让和进行博弈,训练过程中通过相互竞争让这两个模型同时得到增强。由于判别模型的存在,使得 在没有大量先验知识以及先验分布的前提下也能很好的去学习逼近真实数据,并最终让模型生成的数据达到以假乱真的效果(即无法区分生成的图片与真实图片,从而和达到某种纳什均衡)。

生成模型(Generative model)与判别模型(Discriminative mode)概念

生成模型:对联合概率进行建模,从统计的角度表示数据的分布情况,刻画数据是如何生成的,收敛速度快,例如朴素贝叶斯,GDA,HMM等。

判别模型:对条件概率进行建模,不关心数据如何生成,主要是寻找不同类别之间的最优分类面,例如LR,SVM等。

判别模型在深度学习乃至机器学习领域取得了巨大成功,其本质是将样本的特征向量映射成对应的label;而生成模型由于需要大量的先验知识去对真实世界进行建模,且先验分布的选择直接影响模型的性能,因此此前人们更多关注于判别模型方法。

从概率分布的角度考虑,对于一堆样本数据,每个均有特征$X_i$对应分类标记$y_i$。

生成模型:学习得到联合概率分布P(x,y),即特征x和标记y共同出现的概率,然后求条件概率分布。能够学习到数据生成的机制。

判别模型:学习得到条件概率分布P(y|x),即在特征x出现的情况下标记y出现的概率。

数据要求:生成模型需要的数据量比较大,能够较好地估计概率密度;而判别模型对数据样本量的要求没有那么多。

生成模型和判别模型特点

在监督学习中,两种方法适合于不同条件的学习问题。

生成方法的特点:上面说到,生成方法学习联合概率密度分布P(X,Y),所以就可以从统计的角度表示数据的分布情况,能够反映同类数据本身的相似度。但它不关心到底划分各类的那个分类边界在哪。生成方法可以还原出联合概率分布P(Y|X),而判别方法不能。生成方法的学习收敛速度更快,即当样本容量增加的时候,学到的模型可以更快的收敛于真实模型,当存在隐变量时,仍可以用生成方法学习。此时判别方法就不能用。

判别方法的特点:判别方法直接学习的是决策函数Y=f(X)或者条件概率分布P(Y|X)。不能反映训练数据本身的特性。但它寻找不同类别之间的最优分类面,反映的是异类数据之间的差异。直接面对预测,往往学习的准确率更高。由于直接学习P(Y|X)或P(X),可以对数据进行各种程度上的抽象、定义特征并使用特征,因此可以简化学习问题。

关闭
感谢您的支持,我会继续努力!
扫码打赏,建议金额1-10元


提醒:打赏金额将直接进入对方账号,无法退款,请您谨慎操作。